Τα μαθηματικά καταπολεμούν τη γρίπη

Symbolbild Tafel mit Zahlen und Formeln (Colourbox/Abbyasov Alexey)Πώς θα συμπεριφερθεί το επόμενο κύμα γρίπης; Ένα ερώτημα που δεν απασχολεί μόνο τους γιατρούς αλλά και τους μαθηματικούς. Τα μαθηματικά μοντέλα μπορούν να συμβάλουν στην αντιμετώπιση μεταδιδόμενων ασθενειών.

Μία καμπύλη γραμμή σε ένα διάγραμμα μπορεί να αφηγηθεί διάφορες ιστορίες. Όπως για παράδειγμα τις ιστορίες ασθενών. Ο μαθηματικός και βιολόγος Μάρτιν Άιχνερ έχει αναλάβει να αποκωδικοποιήσει τις πληροφορίες που κρύβονται πίσω από την λεπτή γαλάζια γραμμή ενός διαγράμματος. Είναι ερευνητής και καθηγητής στο πανεπιστήμιο της Τυβίγγης, με αντικείμενο τη μαθηματική απεικόνιση της εξέλιξης των ασθενειών.  Η γαλάζια γραμμή βοηθά τους επιστήμονες να προβλέψουν την εξέλιξη κάποιας ασθένειας, όπως είναι η γρίπη.

Τέτοια μαθηματικά μοντέλα όπως αυτό του Άιχνερ ενημερώνονται με ποικίλες πληροφορίες. Σε ένα μοντέλο για τη γρίπη για παράδειγμα, απεικονίζεται σε ποιο βαθμό η ασθένεια είναι κολλητική, για πόσο καιρό μετά την ανάρρωση ένας ασθενής μπορεί να μεταδώσει την ασθένεια, για πόσο καιρό κάποιος που έχει εμβολιαστεί διαθέτει ανοσία και πόσο συχνά οι άνθρωποι έρχονται σε επαφή μεταξύ τους ανάλογα με την ηλικιακή ομάδα στην οποία ανήκουν.

Όταν όμως λείπουν οι σχετικές πληροφορίες, ο Άιχνερ πρέπει να προχωρήσει σε υποθέσεις. «Σε κάποια σημεία απλώς δεν έχουμε τις απαραίτητες πληροφορίες» λέει. Ωστόσο τα μαθηματικά μοντέλα που επεξεργάζεται δεν προβλέπουν το μέλλον. Στόχος είναι να απαντήσουν στο ερώτημα «τι θα γίνει, εάν…». Ένα παράδειγμα: «Πώς συμπεριφέρεται μία ασθένεια, όταν έχει εμβολιαστεί το 20% του πληθυσμού; Και τι συμβαίνει όταν εμβολιάζεται ο μισός πληθυσμός; Με αυτά τα μοντέλα μπορούμε να επεξεργαστούμε διαφορετικά δεδομένα», τονίζει Άιχνερ.

Εφαρμοσμένη επιστήμη

Τα αποτελέσματα της έρευνας είναι χρήσιμα στις φαρμακοβιομηχανίες, οι οποίες θέλουν να γνωρίζουν πώς επιδρούν οι εμβολιασμοί στη διάδοση της γρίπης. Μέσω ενός τέτοιου μοντέλου θα μπορούσε επίσης μία επιχείρηση να «διασπείρει» εικονικά ένα κύμα γρίπης στους εργαζομένους της, ώστε να διαπιστώσει πόσο καλά είναι προετοιμασμένη για ένα τέτοιο ενδεχόμενο.

Επίσης τα μαθηματικά μοντέλα θα μπορούσαν να συμβάλουν αποτελεσματικά στην πρόληψη κάποιων ασθενειών, δείχνοντας για παράδειγμα, με ποιο τρόπο διαδίδεται ένας ιός. Ποικίλα δεδομένα είναι χρήσιμα στην ανάπτυξη τέτοιων μοντέλων, όπως για παράδειγμα η μεταφορά ασθενειών από χώρα σε χώρα μέσω των αεροπορικών ταξιδιών.

Έτσι οι επιστήμονες μπορούν να περάσουν σε πρακτικές λύσεις για την αντιμετώπιση μιας επιδημίας, απαντώντας σε ερωτήματα όπως: Ποιο τμήμα του πληθυσμού θα πρέπει να εμβολιαστεί πρώτο; Ο ενεργός επαγγελματικά πληθυσμός; Ή οι ευπαθείς ομάδες; Σε αυτή την περίπτωση η μαθηματική ανάλυση θα μπορούσε να είναι πολύ χρήσιμη στην απάντηση του ερωτήματος: «Εάν επέλεγε κανείς μια συγκεκριμένη λύση, τι θα έπρεπε να περιμένει;»

Λένα Μίσιγκμαν

Πηγή

 

Posted in Χωρίς κατηγορία

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Recent Posts
February 2017
M T W T F S S
« Jan   Mar »
 12345
6789101112
13141516171819
20212223242526
2728  
Blog Stats
  • 219,166 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,899 other followers

Follow ΖΗΣΕ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΟΥ on WordPress.com
in search of Physics

ένα project για τη διδασκαλία της Φυσικής στη Δευτεροβάθμια εκπαίδευση

Joy of mathematics

Live Your Maths

Ο άγνωστος χ

Live Your Maths

%d bloggers like this: