Η μεγαλύτερη απόδειξη μαθηματικών όλων των εποχών έχει μέγεθος 200 Terabytes

Η μεγαλύτερη απόδειξη μαθηματικών όλων των εποχών έχει μέγεθος 200 TerabytesΈνας υπερυπολογιστής πραγματοποίησε τη μεγαλύτερη απόδειξη μαθηματικών σε μόλις 2 ημέρες. Το μέγεθος του αρχείου που περιέχει την υποβοηθούμενη από υπολογιστή απόδειξη αγγίζει τα 200 ​​terabytes – δηλαδή περίπου όσο χώρο καταλαμβάνουν όλα τα ψηφιοποιημένα κείμενα της τεράστιας Βιβλιοθήκης του Κογκρέσου των ΗΠΑ. Αφορά ένα μαθηματικό πρόβλημα που απασχολεί τους μαθηματικούς δεκαετίες και είναι γνωστό ως  το πρόβλημα των «μπουλιανών πυθαγόρειων τριάδων»

Η απόδειξη είναι συμπιεσμένη σε ένα αρχείο 68 gigabytes, που σημαίνει ότι όποιος θέλει μπορεί να την κατεβάσει, να την ανακατασκευάσει και να επαληθεύσει όλες τις πληροφορίες που είναι ενσωματωμένες σε αυτό.

Το αρχείο των 200 terabytes ξεπερνά το προηγούμενο καταγεγραμμένο ρεκόρ αρχείου για την μεγαλύτερη υποβοηθούμενη απόδειξη από υπολογιστή, το οποίο είχε μέγεθος μόλις 13 gigabytes.

Σύμφωνα με τον  Ronald Graham, μαθηματικό του San Diego από το Πανεπιστήμιο της Καλιφόρνια και προηγούμενο κάτοχο ρεκόρ της τότε μεγαλύτερης απόδειξης, οι υπολογιστές βοηθούν στη δημιουργία αποδείξεων για συνδυαστικά προβλήματα.

Το πρόβλημα πίσω από την απόδειξη

Το πρόβλημα που παρέμενε μέχρι πρόσφατα άλυτο, είχε τεθεί το 1980 από τους Erdös-Graham και η απάντηση δόθηκε από τους Marijn J. H. Heule, Oliver Kullmann, και Victor W. Marek. [Solving and Verifying the boolean Pythagorean]

Η διατύπωση του προβλήματος: Μπορούμε να διαχωρίσουμε το σύνολο των φυσικών αριθμών Ν={1, 2, 3, 4, …} σε δυο σύνολα, τέτοια ώστε κανένα από τα δύο να μην περιέχει πυθαγόρειες τριάδες (δηλαδή τριάδες αριθμών a, b, c που ικανοποιούν τη σχέση a2 + b2= c2);

Ή να το πούμε διαφορετικά: Είναι δυνατόν να χρωματίσουμε όλους τους ακέραιους αριθμούς είτε με κόκκινο είτε με μπλε χρώμα, έτσι ώστε να μην υπάρχει πυθαγόρεια τριάδα ακεραίων a, b, c (a2 + b2 = c2) με το ίδιο χρώμα;

Για παράδειγμα, στην πυθαγόρεια τριάδα 3, 4 και 5, αν τα 3 και 5 είναι χρώματος μπλε, τότε το 4 θα πρέπει να είναι κόκκινο.

Credit: Nature

Η απόδειξη πραγματοποιήθηκε διαμέσου υπολογιστή 

Αν και το πρόβλημα επέτρεπε πολλούς δυνατούς τρόπους για να χρωματιστούν οι ακέραιοι αριθμοί με διαφορετικούς συνδυασμούς, οι επιστήμονες εκμεταλλεύτηκαν τεχνικές και συμμετρίες από τη θεωρία αριθμών για να μειώσουν τον αριθμό των ελέγχων που έπρεπε να κάνει ο υπολογιστής. Αυτό το βήμα ελαχιστοποίησε τον αριθμό των πράξεων που εκτελούνται από τον υπολογιστή κατά σχεδόν 1 τρισεκατομμύριο.

Δύο μέρες αργότερα, ο υπερυπολογιστής Stampede των 800 επεξεργαστών του Πανεπιστημίου του Τέξας παρήγαγε το αρχείο  των 200 terabytes. Στη συνέχεια, χρησιμοποιήθηκε ξεχωριστό πρόγραμμα υπολογιστή για την επαλήθευση της παραγόμενης απόδειξης.

Credit: Nature

Παρά το γεγονός ότι έσπασε το περίφημο πρόβλημα των «μπουλιανών πυθαγόρειων τριάδων», το αρχείο που καταγράφηκε εξακολουθεί να μην παρέχει απαντήσεις σχετικά με το γιατί είναι εφικτό το σχέδιο χρωματισμού.

Η απόδειξη αποκάλυψε ότι ναι, είναι δυνατό να χρωματιστούν οι ακέραιοι αριθμοί με πολλούς τρόπους. Ωστόσο, υπάρχει ένα όριο, αυτό των 7.824 ακεραίων. Μετά από αυτό το σημείο, δεν είναι δυνατό. Αυτό δημιουργεί περισσότερες ερωτήσεις: Γιατί υπάρχει σημείο αποκοπής στα 7.825; Γιατί είναι δυνατή η πρώτη επέκταση;

Τα ευρήματα της ομάδας παρουσιάζονται στην ηλεκτρονική βιβλιοθήκη του Πανεπιστημίου Cornell.

Πηγές

 

Posted in Χωρίς κατηγορία

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Recent Posts
December 2017
M T W T F S S
« Nov   Jan »
 123
45678910
11121314151617
18192021222324
25262728293031
Pages
Blog Stats
  • 303,165 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,978 other followers

Follow ΖΗΣΕ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΟΥ on WordPress.com
in search of Physics

ένα project για τη διδασκαλία της Φυσικής στη Δευτεροβάθμια εκπαίδευση

Joy of mathematics

Live Your Maths

Ο άγνωστος χ

Live Your Maths

%d bloggers like this: